Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706402

RESUMO

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunoglobulina A , Imunoglobulina G , SARS-CoV-2 , Humanos , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , SARS-CoV-2/imunologia , Adulto , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Pessoa de Meia-Idade , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Adulto Jovem , Seguimentos , Vacinação , Idoso , Imunogenicidade da Vacina , Formação de Anticorpos/imunologia , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Cell Death Discov ; 10(1): 165, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575580

RESUMO

The fidelity of translation is ensured by a family of proteins named aminoacyl-tRNA synthetases (ARSs), making them crucial for development and survival. More recently, mutations in the tryptophanyl-tRNA synthetase 1 (WARS1) have been linked to various human diseases, from intellectual disability to various types of cancer. To understand the function of WARS1, we investigated the effect of WARS-1 depletion during the mitotic and meiotic cell cycle in the developing germline of Caenorhabditis elegans (C. elegans) and demonstrated the role of WARS-1 in genome integrity. wars-1 knockdown results in cell cycle arrest of the mitotically active germ cells. Such mitotic arrest is also associated with canonical DNA damage-induced checkpoint signaling in mitotic and meiotic germ cells. Significantly, such DNA checkpoint activation is associated with the morphological anomalies in chromatin structures that are the hallmarks of genome instability, such as the formation of chromatin bridges, micronuclei, and chromatin buds. We demonstrated that knocking down wars-1 results in an elevation of the intracellular concentration of tryptophan and its catabolites, a surprising finding emphasizing the impact of cellular amino acid availability and organismal/individual dietary uptake on genome integrity. Our result demonstrates that exposing C. elegans to a high tryptophan dosage leads to DNA damage checkpoint activation and a significant increase in the tryptophan metabolites. Targeting tryptophan catabolism, the least utilized amino acid in nature, can be important in developing new cancer therapeutic approaches. All in all, we have strong evidence that knocking down wars-1 results in defects in genomic integrity.

3.
Virol J ; 20(1): 188, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608372

RESUMO

BACKGROUND: Limited data exists on herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections in migrant populations. This study investigated HSV-1 and HSV-2 seroprevalences and associations among craft and manual workers (CMWs) in Qatar who constitute 60% of Qatar's population. METHODS: A national population-based cross-sectional seroprevalence survey was conducted on the CMW population, all men, between July 26 and September 9, 2020. 2,612 sera were tested for anti-HSV-1 IgG antibodies using HerpeSelect 1 ELISA IgG kits and for anti-HSV-2 IgG antibodies using HerpeSelect 2 ELISA IgG kits (Focus Diagnostics, USA). Univariable and multivariable logistic regression analyses were conducted to identify associations with HSV-1 and HSV-2 infections. RESULTS: Serological testing identified 2,171 sera as positive, 403 as negative, and 38 as equivocal for HSV-1 antibodies, and 300 sera as positive, 2,250 as negative, and 62 as equivocal for HSV-2 antibodies. HSV-1 and HSV-2 seroprevalences among CMWs were estimated at 84.2% (95% CI 82.8-85.6%) and 11.4% (95% CI 10.1-12.6%), respectively. HSV-1 infection was associated with nationality, educational attainment, and occupation. HSV-2 infection was associated with age, nationality, and educational attainment. CONCLUSIONS: Over 80% of CMWs are infected with HSV-1 and over 10% are infected with HSV-2. The findings highlight the need for sexual health programs to tackle sexually transmitted infections among the CMW population.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Migrantes , Masculino , Humanos , Catar/epidemiologia , Estudos Transversais , Estudos Soroepidemiológicos , Herpes Simples/epidemiologia , Herpesvirus Humano 2 , Anticorpos Antivirais , Imunoglobulina G
4.
ACS Omega ; 8(25): 22361-22381, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396246

RESUMO

A carbon nitride (C3N4) nanomaterial has superior mechanical, thermal, and tribological properties, which make them attractive for various applications, including corrosion-resistant coatings. In this research, newly synthesized C3N4 nanocapsules with different concentrations (0.5, 1.0, and 2.0 wt %) of ZnO as a dopant were incorporated into the NiP coating using an electroless deposition technique. The nanocomposite coatings either ZnO-doped (NiP-C3N4/ZnO) or undoped (NiP-C3N4) were heat-treated at 400 °C for 1 h. The as-plated and heat-treated (HT) nanocomposite coatings were characterized by their morphology, phases, roughness, wettability, hardness, corrosion protection, and antibacterial properties. The results indicated that the microhardness of as-plated and heat-treated nanocomposite coatings was significantly improved after the incorporation of 0.5 wt % ZnO-doped C3N4 nanocapsules. The outcomes of electrochemical studies revealed that the corrosion resistance of the HT coatings is higher than the corresponding as-plated ones. The highest corrosion resistance is achieved on the heat-treated NiP-C3N4/1.0 wt % ZnO coatings. Although the presence of ZnO in the C3N4 nanocapsules increased its surface area and porosity, the C3N4/ZnO nanocapsules prevented localized corrosion by filling the microdefects and pores of the NiP matrix. Furthermore, the colony-counting method used to evaluate the antibacterial behavior of the different coatings demonstrated superior antibacterial properties, namely, after heat treatment. Therefore, the novel perspective C3N4/ZnO nanocapsules can be utilized as a reinforcement nanomaterial in improving the mechanical and anticorrosion performance of NiP coatings in chloride media, together with providing superior antibacterial properties.

5.
J Travel Med ; 29(8)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36342115

RESUMO

BACKGROUND: Waning protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited because of current vaccination or natural infection is a global concern. Whether this is due to the waning of immunity to SARS-COV-2 remains unclear. AIM: We aimed to investigate the dynamics of antibody isotype responses amongst vaccinated naïve (VN) and naturally infected (NI) individuals. METHODS: We followed up antibody levels in COVID-19 messenger RNA (mRNA)-vaccinated subjects without prior infection (VN, n = 100) in two phases: phase-I (P-I) at ~ 1.4 and phase-II (P-II) at ~ 5.3 months. Antibody levels were compared with those of unvaccinated and naturally infected subjects (NI, n = 40) at ~ 1.7 (P-1) and 5.2 (P-II) months post-infection. Neutralizing antibodies (NTAb), anti-S-RBD-IgG, -IgM and anti-S-IgA isotypes were measured. RESULTS: The VN group elicited significantly greater antibody responses (P < 0.001) than the NI group at P-I, except for IgM. In the VN group, a significant waning in antibody response was observed in all isotypes. There was about an ~ 4-fold decline in NTAb levels (P < 0.001), anti-S-RBD-IgG (~5-fold, P < 0.001), anti-S-RBD-IgM (~6-fold, P < 0.001) and anti-S1-IgA (2-fold, P < 0.001). In the NI group, a significant but less steady decline was notable in S-RBD-IgM (~2-fold, P < 0.001), and a much smaller but significant difference in NTAb (<2-fold, P < 0.001) anti-S-RBD IgG (<2-fold, P = 0.005). Unlike the VN group, the NI group mounted a lasting anti-S1-IgA response with no significant decline. Anti-S1-IgA, which were ~ 3-fold higher in VN subjects compared with NI in P-1 (P < 0.001), dropped to almost the same levels, with no significant difference observed between the two groups in P-II. CONCLUSION: Whereas double-dose mRNA vaccination boosted antibody levels, vaccinated individuals' 'boost' was relatively short-lived.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , RNA Mensageiro , Vacinação , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais
6.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016206

RESUMO

Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.

7.
Int J Infect Dis ; 118: 132-137, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231609

RESUMO

BACKGROUND: A vast majority of the commercially available lateral flow immunoassay (LFIA) is used to detect SARS-CoV-2 antibodies qualitatively. Recently, a novel fluorescence-based lateral flow immunoassay (LFIA) test was developed for quantitative measurement of the total binding antibody units (BAUs) (BAU/mL) against SARS-CoV-2 spike protein receptor-binding domain (S-RBD). AIM: This study aimed to evaluate the performance of the fluorescence LFIA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113). METHODS: Plasma from 150 reverse trancriptase-PCR (RT-PCR)-confirmed positive individuals and 100 prepandemic samples were tested by FincareTM to access sensitivity and specificity. For qualitative and quantitative validation of the FinCareTM measurements, BAU/mL results of FinCareTM were compared with results of 2 reference assays: the surrogate virus-neutralizing test (sVNT, GenScript Biotech, USA) and the VIDAS®3 automated assay (BioMérieux, France). RESULTS: FinecareTM showed 92% sensitivity and 100% specificity compared with PCR. Cohen's Kappa statistic denoted moderate and excellent agreement with sVNT and VIDAS®3, with values being 0.557 (95% CI: 0.32-0.78) and 0.731 (95% CI: 0.51-0.95), respectively. A strong correlation was observed between FinecareTM/sVNT (r = 0.7, p < 0.0001) and FinecareTM/VIDAS®3 (r = 0.8, p < 0.0001). CONCLUSION: FinecareTM is a reliable assay and can be used as a surrogate to assess binding and neutralizing antibody response after infection or vaccination, particularly in none or small laboratory settings.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Imunoensaio/métodos , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus
8.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35214650

RESUMO

The currently authorized mRNA COVID-19 vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, offer great promise for reducing the spread of the COVID-19 by generating protective immunity against SARS-CoV-2. Recently, it was shown that the magnitude of the neutralizing antibody (NAbs) response correlates with the degree of protection. However, the difference between the immune response in naïve mRNA-vaccinated and previously infected (PI) individuals is not well studied. We investigated the level of NAbs in naïve and PI individuals after 1 to 26 (median = 6) weeks of the second dose of BNT162b2 or mRNA-1273 vaccination. The naïve mRNA-1273 vaccinated group (n = 68) generated significantly higher (~2-fold, p ≤ 0.001) NAbs than the naïve BNT162b2 (n = 358) group. The P -vaccinated group (n = 42) generated significantly higher (~3-fold; p ≤ 0.001) NAbs levels than the naïve-BNT162b2 (n = 426). Additionally, the older age groups produced a significantly higher levels of antibodies than the young age group (<30) (p = 0.0007). Our results showed that mRNA-1273 generated a higher NAbs response than the BNT162b2 vaccine, and the PI group generated the highest level of NAbs response regardless of the type of vaccine.

9.
Intervirology ; 65(4): 224-229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134813

RESUMO

Several studies have reported serological cross-reactivity of the immune responses between SARS-CoV-2 and DENV. Most of the available studies are based on the point-of-care rapid testing kits. However, some rapid test kits have low specificity and can generate false positives. Hence, we aimed to investigate the potential serological cross-reactivity between SARS-CoV-2 and DENV-IgG antibodies using advanced assays including chemiluminescence immunoassay (CLIA) and enzyme-linked immunosorbent assay (ELISA) test. A total of 90 DENV-IgG-ELISA-positive and 90 DENV-IgG-ELISA-negative prepandemic sera were tested for anti-SARS-CoV-2-IgG using the automated CL-900i CLIA assay. Furthermore, a total of 91 SARS-CoV-2-IgG-CLIA-positive and 91 SARS-CoV-2-IgG-CLIA-negative postpandemic sera were tested for anti-DENV-IgG using the NovaLisa ELISA kit. The DENV-IgG-positive sera resulted in five positives and 85 negatives for SARS-CoV-2-IgG. Similarly, the DENV-IgG-negative sera also resulted in 5 positives and 85 negatives for SARS-CoV-2-IgG. No statistically significant difference in specificity between the DENV-IgG-positive and DENV-IgG-negative sera was found (p value = 1.00). The SARS-CoV-2-IgG-positive sera displayed 43 positives, 47 negatives, and 1 equivocal for DENV-IgG, whereas the SARS-CoV-2-IgG-negative sera resulted in 50 positives, 40 negatives, and 1 equivocal for DENV-IgG. No statistically significant difference in the proportion that is DENV-IgG positive between the SARS-CoV-2-IgG-positive and SARS-CoV-2-IgG-negative sera (p value = 0.58). In conclusion, there is a low risk of serological cross-reactivity between the DENV and SARS-CoV-2-IgG antibodies when using advanced detection assays.


Assuntos
COVID-19 , Vírus da Dengue , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos Antivirais , Imunoglobulina G , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade
10.
J Travel Med ; 28(8)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34888670

RESUMO

BACKGROUND: Two mRNA vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, obtained the Emergency Use Listing by WHO for preventing COVID-19. However, little is known about the difference in antibody responses induced by these two mRNA vaccines in naïve and previously infected (PI) individuals. METHOD: We investigated the levels of anti-S-RBD (total, IgG and IgA) levels in naïve and PI individuals, 1-13 (median = 6) weeks following the second dose of either vaccine. Results in the naïve-vaccinated group, the mRNA-1273 vaccine induced significantly higher levels of anti-S-RBD total antibodies (3.5-fold; P < 0.001), IgG (2-fold, P < 0.01) and IgA (2.1-fold, P < 0.001) as compared with the BNT162b2 vaccine. In addition, both vaccines produced significantly higher anti-S-RBD total antibody levels in the PI-group compared with naïve-vaccinated group. The PI group elicited a higher level of anti-S-RBD IgG than the naïve-BNT162b2 (P = 0.05), but not more than the naïve-mRNA-1273 (P = 0.9) group. Interestingly, the PI vaccinated group elicited a comparable level of IgA ratio to the naïve-mRNA-1273 group but significantly higher than the naïve-BNT162b2 group (1.6-fold, P < 0.001). CONCLUSION: Our results showed that the PI-vaccinated group produces a higher level of antibodies than the naïve vaccinated group, particularly for those vaccinated with BNT162b2.


Assuntos
COVID-19 , Vacinas , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Imunidade , SARS-CoV-2 , Vacinas de mRNA
11.
J Med Microbiol ; 70(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34356000

RESUMO

Several studies have investigated the effect of repeated freeze-thaw (F/T) cycles on RNA detection for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, no data are available regarding the effect of repeated F/T cycles on SARS-CoV-2 antibody detection in serum. We investigated the effect of multiple F/T cycles on anti-SARS-CoV-2 IgG detection using an ELISA test targeting the nucleocapsid antibodies. Ten positive and 1 negative SARS-CoV-2 IgG sera from 11 participants, in replicates of 5, were subjected to a total of 16 F/T cycles and stored at 4 °C until tested by ELISA. Statistical analysis was performed to test for F/T cycle effect. None of the 10 positive sera became negative after 16 F/T cycles. There was no significant difference in the OD average reading between the first and last F/T cycles, except for one serum with a minimal decline in the OD. The random effect linear regression of log (OD) on the number of cycles showed no significant trend, with a slope consistent with zero (B=-0.0001; 95 % CI -0.0008; 0.0006; P-value=0.781). These results suggest that multiple F/T cycles had no effect on the ability of the ELISA assay to detect SARS-CoV-2 IgG antibodies.


Assuntos
Anticorpos Antivirais/sangue , Preservação de Sangue , COVID-19/diagnóstico , Criopreservação , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Teste Sorológico para COVID-19 , Ensaio de Imunoadsorção Enzimática , Humanos , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
12.
Front Biosci (Landmark Ed) ; 26(7): 198-206, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34340267

RESUMO

Background: High-throughput assays that can infer neutralizing activity against SARS-CoV-2 are of great importance for assessing the immunity induced by natural infection and COVID-19 vaccines. We aimed to evaluate the performance and degree of correlation of three fully automated anti-SARS-CoV-2 immunoassays with neutralization activity using a surrogate virus-neutralizing test (sVNT) from GenScript, targeting the receptor-binding domain. Methods: 110 sera collected from PCR-confirmed asymptomatic COVID-19 individuals were tested for neutralizing antibodies (nAbs) using the sVNT. Positive samples were tested on three automated immunoassays targeting different viral antigens: Mindray CL-900i®, Abbott Architect, and Ortho VITROS®. The diagnostic sensitivity, specificity, agreement, and correlation with the sVNT were assessed. Receiver operating characteristic (ROC) curve analysis was performed to determine optimal thresholds for predicting the presence of neutralizing activity by each assay. Results: All three assays showed 100% specificities. The highest sensitivity was 99.0%, demonstrated by VITROS®, followed by 94.3%, for CL-900i®, and 81.0%, for Architect. Both VITROS® and CL-900i® had the strongest correlation with the sVNT (ρ = 0.718 and ρ = 0.712, respectively), while Architect showed a moderate correlation (ρ = 0.618). ROC curve analysis indicated that the manufacturer's recommended cutoff values are adequate for predicting the presence of nAbs and providing a strong correlation with the sVNT. Conclusion: VITROS® and CL-900i® serological assays, which detect antibodies against SARS-CoV-2 spike protein, could serve as reliable assays to predict neutralization activity after infection or vaccination.


Assuntos
Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Imunoensaio/métodos , SARS-CoV-2/imunologia , Automação , COVID-19/virologia , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA